Tag Archive for: land management

Habitat Specialist Andrew Eberly has many roles here, including growing seedlings for our plant sales, conducting plant and bird surveys, and helping to manage our 900-acre property. Here he shares some of the thinking that goes into taking care of our land.

Each fall I find myself out in the fields doing the repetitive, physical work of controlling the trees and shrubs that have worked their way into the 300 acres we are trying to manage as grasslands or shrubby savannas. This is time-consuming and sometimes arduous work, but it’s also enjoyable in many ways. It gives me a close look at what is growing out there and allows me time to ponder the pros and cons of the methods we are using to manage the land. What follows is a sample of some of these thoughts. To start with, there seem to be as many approaches to managing land as there are land managers and that’s OK. We are working with ecological processes that play out over tremendous periods of time and we must be at peace with the fact that a human lifetime isn’t long enough to see the results of all of our plans and hard work.

Turkey Gap in summer.

We’re all about grasslands here at Clifton. They are the most imperiled habitat we have and the plant species that comprise our remaining grasslands won’t survive if trees shade them out. The easiest thing would be to mow them short every year, but transitional habitats are also valuable. It’s a constant struggle to strike a balance between what is feasible from a management perspective and creating a mosaic of multiple successional stages.

The field we call Turkey Gap is an old pasture in the process of diversifying and reverting to a wilder type of shrubby savanna ecosystem. It’s a good example of the kind of transitional habitat that we want to make sure persists. Most of Turkey Gap gets bush hogged regularly, but for the last three years I’ve set aside a small area to see if there’s any chance of maintaining it without mowing. Mowing is a necessary tool in grassland management, but in my experience it has some downsides. For small animals living in fields, mowing is a catastrophic event. Also some invasive woody plants actually increase when they get mowed once a year. Finally, mowing has a tendency to smooth out the natural heterogeneity of sizes and ages naturally found in grasslands and shrublands.

My experiment now hosts hundreds of Tulip Poplars, Black Walnuts, Autumn Olive, and many more tree species that have already reached 15’ to 20’ in height. The result is a beautiful early successional woodland that hosts nesting American Woodcocks, roosting Red Bats, Box Turtles, and countless other animal species that seem to depend on having some scraggly, immature woodland patches within their home ranges. But soon my little section of Turkey Gap will grow up into mature forest unless I do something about it. Removing tree seedlings by hand with loppers and spraying the stumps with herbicide is the most targeted approach. Moving slowly through the habitat in this way allows me to find and avoid killing special  native shrubs like Southern Crabapple and American Plum, along with more common species like sumacs and native roses that I believe should have a place in any savanna. Basal bark spraying with herbicide is a quicker strategy I plan on exploring in the future.

Turkey Gap in fall.

Why do I have to use chemicals anyway? Most of our perennial broad-leaved plants are adapted to being broken, burned, or cut periodically and they will happily resprout repeatedly with more individual stems each time. Invasive Autumn Olive is especially good at the “hydra” growth pattern. Herbicide is necessary to prevent the trees I’m removing from growing right back. Ultimately we are trying to mimic the natural disturbances of fire and grazing, so why don’t we just burn it and put some Bison out there? We will! Well, maybe not bison. Bison are a challenge to contain and they eat mostly grass, so they are hard to work with. We do prescribed burns, but they can be logistically hard to pull off. Fires are particularly challenging during the growing season when they would have the biggest impact on tree growth. Plus, in many parts of the Clifton property–even places that get burned repeatedly–woody species sometimes keep growing and eventually dominate to the point where they inhibit the growth of more flammable grasses and wildflowers, which prevents fire from having the effects we want it to. Some spots simply don’t want to burn.

It seems that if we want grasslands and savannas alongside forests on a medium-sized property like ours we have to be a little heavy-handed. I’m all for “letting nature take its course” in large wilderness areas where there will naturally be sections at different stages of succession, but we have to work hard to create and maintain the diversity of habitats we want here.

This kind of thinking leads me to another question that I often think about when I’m out there. How feasible is it to maintain native grasslands here long-term? The Clifton Institute lies on metabasalt (greenstone) bedrock. The soil here is relatively nutrient rich and some spots hold water for a long time. There aren’t as many remnant prairies on metabasalt compared to the poorer soils to our east, apparently because most sites have been converted to agriculture. These richer and moister soils tend to benefit non-native plants, which makes my job harder.

On the Clifton Institute property, we are living with the legacy of hundreds of years of agriculture. The current placement of our fields and forests is dictated by this history, as is the species composition of our plant communities. Moving toward a diverse mosaic of habitats dominated by native species will take time. We will continue to use the tools at our disposal and take cues from the environment to guide things toward greater biological diversity. This is a process that will take many years and will hopefully extend far beyond any of our lifetimes.

Turkey Gap in winter.

Words and photos courtesy of Andrew Eberly

 

Fall is our busiest time for removing Autumn Olive (Elaeagnus umbellata) and other woody invasives. When I scan the fields for plants to cut, Autumn Olive tends to stand out, but with the diversity of different forms and textures in some areas, even that species can blend into the background and go undetected. One eventually develops a search image for whatever the target species is. I tend to focus on the silvery and persistent foliage of Autumn Olive, or the barred pattern created by the compound leaves of Black Locust (Robinia pseudoacacia). When a single species or set of species comes into focus over the “background noise” of different forms, interesting patterns emerge.

An island of Swamp Rose (Rosa palustris) growing in a wet meadow in Fauquier County. Members of the rose family are often prolific cloners. It is likely that much of this island is just one genetic individual expanding outward each growing season. This area was burned in the winter of 2022. Islands of thorny shrubs like this act as a refuge and a food source for many animals. When planning restorations, it is worth thinking about how to lay out the landscape to accommodate for this growth form.

I often notice that many of the more prominent species seem to occur in clumps, almost like islands where one species is particularly dominant. The islands are numerous in some areas while absent from others. Occasionally, they even seem to have a ring-like shape. At Clifton, Blackberries (Rubus sp.) and Coralberry (Symphoricarpos orbiculatus) dominate patches of ground throughout the grasslands, Black Locust occurs as a few large islands of dense, thorny saplings, Sassafras (Sassafras albidum) seems to grow in mounds of evenly aged stems, even the Lowbush Blueberry (Vaccinium pallidum) of the forest floor forms islands that hold on to windblown leaves in the winter, adding to their bulk.

This is an interesting and familiar pattern. I am reminded of many other grassland ecosystems I have worked in: Wild Plums (Prunus sp.) and Sumacs (Rhus sp.) in the Flint Hills of Kansas, mounds of Mesquite (Prosopis glandulosa) and Shin Oak (Quercus havardii) on the Rolling Plains of Oklahoma, “mottes” of Live Oak (Quercus fusiformis) on the Edward’s Plateau of Texas, thickets of Turkey Oak (Quercus laevis) in a Longleaf Pine (Pinus palustris) savanna in Florida, rings of grasses like Little Bluestem (Schizachyrium scoparium) and Blue Grama (Bouteloua gracilis) on dry prairies, walls of Alders (Alnus sp.) and shrubby Dogwoods (Cornus sp.) crowding stream banks in New England.

It seems to be a theme in ecosystems of many types, and I often wonder, are these really congregations of different individuals? Could the islands be just a single organism with lots of different stems emerging from one root system?

A large patch of Narrowleaf Mountain-Mint (Pycnanthemum tenuifolium) in Fauquier County. Like many mints this species is a master of spreading through rhizomes. This is also a prolific seed producer, it seems likely that a patch like this is expanding by both sexual and asexual reproduction.

Cloning in one form or another is a very common way for plants to propagate themselves. Many people may have heard of Pando, the Quaking Aspen (Populus tremuloides) in Utah that occupies 106 acres of land and has 40,000 above ground stems (trees) to its name. This is all a single genetic individual, connected by its roots to form the largest organism on the planet. King Clone is another famous clone, a Creosote Bush (Larrea tridentata) in the Mojave Desert that has been creeping underground and sending up new aboveground shoots for nearly 12,000 years. We have many local examples, indeed, most of our perennial grasses and forbs and many of our trees can produce new plants from some portion of their root system or underground stems designed specifically for cloning.

Several new shoots arise from a rhizome of Deer-Tongue (Dichanthelium clandestinum). This species forms clonal colonies in wet meadows. The rhizome has numerous roots growing form it and the purple area at the top is a bud where the cells that will become stems and leaves of a new above ground culm are waiting for warmer weather. If you remove the soil from a shovelful of turf from any given field you will notice that the top couple inches is full of rhizomes, all capable of sending up new shoots when conditions are right.

How do they do it? In many cases plants grow stems underground in addition to their aboveground stems. Underground stems are called rhizomes. Stolons are similar structures that hug the ground just above the surface. Rhizomes and stolons have buds at regular intervals from which new roots and shoots can emerge. Proper roots can also develop buds that become new aboveground shoots. Sometimes these underground buds take the form of bulbs like in daffodils (Narcissus sp.) or they emerge from thickened stolons like in potatoes (Solanum tuberosum). Aboveground stems that are members of a clone are called ramets.

In trees, cloning is especially prevalent in species that grow in disturbed areas like Black Locust, Sassafras, and Sumacs. In places where I have cut younger, more vigorous Tulip Poplars and Oaks, a flush of new buds seems to appear out of nowhere right around the edges of the stump. It is common to see Goldenrods (Solidago sp.), Mountain Mints, Ironweeds (Vernonia sp.), and many other herbaceous perennials growing in clusters. Colonies of Winged Sumac (Rhus copallinum) may expand across our shrublands at a rate of several feet per year while colonies of Indiangrass (Sorghastrum nutans) expand slowly, preferring to cluster their short rhizomes in tight bundles.

The ability to reproduce and spread underground has many advantages for plants that live longer than one or two growing seasons. When we burn or mow our fields in the early spring, we usually see a period of rapid growth afterwards. Most of this growth is generated by plants that may already be years or decades old, but were underground, where stored energy and protection from flames and freezing weather gives them a huge advantage over new seedlings.

Underground growth also allows individuals to search for patches of resources like water and fertile soil, that may not exist exactly where the seeds originally fell. Old ramets on less suitable sites will die off, while growth becomes focused in new areas with better growing conditions, allowing the entire clone to shift across the landscape.

A particularly hot fire killed many of the mature trees here on Back Creek Mountain in Bath County. The Sassafras (Sassafras albidum) in the understory is a highly colonial species, capable of expanding quickly from existing rhizomes to form a dense shrub layer. Many of the Scarlet Oaks (Quercus coccinea) are also sprouting from the root collar adding to the diversity of this temporary shrubland.

If cloning is so efficient, why produce seeds at all? The evolution of flowers and seeds is arguably one of the greatest achievements of life on earth. I don’t wish to diminish the importance of producing seeds. Combining the genomes of two different individuals creates genetic diversity, spreads beneficial mutations and allows organisms to adapt to a changing world. Coating your offspring in a protective shell and then sending them off to the far reaches is a great way to colonize new lands and reduce competition. Once seedlings have established though, it makes sense that you would want to be able to keep sending up new versions of yourself in case one gets burned, frozen, eaten, or chopped down.

At Clifton we have a few American Plums (Prunus americana) that were planted in the South Pasture in conjunction with the larger riparian tree planting effort along a small tributary. Plums and many other members of the genus Prunus love to grow in the form of clonal islands, thickets of densely crowded stems that offer Quail and other grassland birds much needed shelter. We usually try to mow right up to the base of our tree plantings, but I have slowly been trying to give the plums and other plants that love growing this way a little space to develop new shoots or “suckers”. Even if the existing main trunk is girdled and killed, once the root system has developed for a few years, new ramets should happily sprout nearby.

I think it is important to consider this tendency of many species to spread by cloning in our management decisions. How does one accommodate for this pattern of growth when planning restorations or managing land? It seems many people tend to view patches of blackberries or single goldenrod species or any “monoculture” as a hindrance to diversity. This is not always the case; diversity happens on many spatial (and time) scales. For example, many clonal patches take on a ring-like pattern with age. As roots and rhizomes creep outward from the original point of establishment, they utilize available resources and with their combined energy, they can crowd out other plants. Over time though, ramets in the middle of the clone begin to die off as resources are used up and the plant basically out-competes itself. The middle of the clone then becomes bare ground where seeds of new species, with different resource requirements can thrive. Maybe this can be seen as a slow-motion disturbance event, creating new niches in the ecosystem while the clone anchors the soil and provides cover to pollinators and seed dispersers.

Maple-Leaf Viburnum (Viburnum acerifolium) occurs as clonal islands in the forest understory.

Tag Archive for: land management

This workshop is open to all landowners in the Old Dominion Hounds (ODH) territory.

Join us for a workshop where landowners will learn how to manage meadows and forests for the benefit of native plants and animals. We will learn how to control non-native invasive plants such as Japanese Stiltgrass and Oriental Bittersweet, and how to help beneficial species. Participants will visit the Clifton Institute’s native plant garden and wildflower meadows. The program will be led by Executive Director Bert Harris. This event is being sponsored by the Old Dominion Conservation and Education Foundation (ODCEF).

For more information call or text Gale Johnson at 540-660-1849

Cost: Free!

Age: Adults only

Bring: Please bring a water bottle and any other items needed to be comfortable in the heat, be prepared to walk a moderate (less than a mile, mainly flat) distance.

Weather policy: Rain or shine except in case of extreme weather (e.g. thunderstorm or significant snow fall).

COVID-19 Information: This program will be entirely outdoors (an outside porta potty will be available). Please do not attend if you are experiencing or have experienced in the last two weeks any symptoms associated with COVID-19 (fever, cough, shortness of breath, etc.).

Cancellation policy: If you register and can no longer attend this event, please let us know as soon as possible so that we can open your spot to someone else.

By registering for this event, you are affirming that you have read and agree to our liability release policy.

We look forward to seeing you at the Clifton Institute!